

July 6th – 12th, 2025

Over-Swelling Induces Osmotic Explosion of Polymer Network Gels

Sho Ohmura¹, Kosei Oikawa¹, Takuya Nishimura¹, Ryuji Kiyama², Jian Ping Gong^{2, 3}, and Tasuku Nakajima*2, 3

¹ Laboratory of Soft & Wet Matter, Graduate School of Life Science, Hokkaido University, North 21 West 11, Kita-ku, Sapporo, Japan

² Laboratory of Soft & Wet Matter, Faculty of Advanced Life Science, Hokkaido University, North 21 West 11, Kita-ku, Sapporo, Japan

³ Institute for Chemical Reaction Design and Discovery(WPI-ICReDD), Hokkaido University, North 21 West 11, Kita-ku, Sapporo, Japan

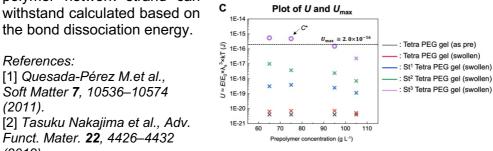
*Tasuku@sci.hokudai.ac.jp

A polymer network soaked in its solvent absorbs the solvent molecules. This phenomenon is well known as a swelling. Here, there is a simple but guite fascinating question. "Can a gel network swell in solvent until it reaches to the structural limit?" To address this question, we adopt the simple but reasonable assumption that the structural swelling limit of a gel is dictated by the extensibility of its network strands. Under this assumption, the structurally possible swelling range of a polymer network is from its dried state to the structural swelling limit where its network strands reach their stretching limit. However, swelling of a polymer network to near its structural limit has not been realized due to the thermodynamic limitation^[1]. Here, we broke the limitation and succeeded in excessive swelling of polymer networks to or even beyond their structural swelling limit. For the excess swelling, we repeatedly introduced dense linear polymers inside a polymer network of interest(Hereafter referred to St gel). The linear polymers, trapped inside the polymer network, generate extremely high osmotic pressure and make the polymer network swell excessively^[2]. The resulting polymer networks over-swollen beyond their structural limit disintegrated into microgels due to catastrophic scission of the network strands, analogous to osmotic hemolysis of red blood cells in a hypotonic solution (Fig.1A, B). Also we found the criteria of the bulk disintegration from the elastic energy per a single polymer

Explosion behavior

в

Microgels


0.2 m

network strand. When the bulk disintegration occurred, following equation is held; $U \ge$ U_{max} (Fig.1C). Here, U is the storage elastic energy per a single polymer network strand estimated from the elastic modulus, and U_{max} is the maximum energy that a single polymer network strand can withstand calculated based on the bond dissociation energy.

References:

(2011).

(2012).

